Comparing the Structural Components Variance Estimator and U-Statistics Variance Estimator When Assessing the Difference Between Correlated AUCs with Finite Samples

نویسندگان

  • Anna L. Bosse
  • Anna Leigh Bosse
چکیده

COMPARING THE STRUCTURAL COMPONENTS VARIANCE ESTIMATOR AND USTATISTICS VARIANCE ESTIMATOR WHEN ASSESSING THE DIFERENCE BETWEEN CORRELATED AUCs WITH FINITE SAMPLES By Anna Leigh Bosse, M.S. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University. Virginia Commonwealth University, 2017 Major Director: Dr. Le Kang, Associate Professor, Department of Biostatistics Introduction: The structural components variance estimator proposed by DeLong et al. (1988) is a popular approach used when comparing two correlated AUCs. However, this variance estimator is biased and could be problematic with small sample sizes. Methods: A U-statistics based variance estimator approach is presented and compared with the structural components variance estimator through a large-scale simulation study under different finite-sample size configurations. Results: The U-statistics variance estimator was unbiased for the true variance of the difference between correlated AUCs regardless of the sample size and had lower RMSE than the structural components variance estimator, providing better type 1 error control and larger power. The structural components variance estimator provided increasingly biased variance estimates as the correlation between biomarkers increased. Discussion: When comparing two correlated AUCs, it is recommended that the U-Statistics variance estimator be used whenever possible, especially for finite sample sizes and highly correlated biomarkers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Structure of Bhattacharyya Matrix in Natural Exponential Family and Its Role in Approximating the Variance of a Statistics

In most situations the best estimator of a function of the parameter exists, but sometimes it has a complex form and we cannot compute its variance explicitly. Therefore, a lower bound for the variance of an estimator is one of the fundamentals in the estimation theory, because it gives us an idea about the accuracy of an estimator. It is well-known in statistical inference that the Cram&eac...

متن کامل

Estimating a Bounded Normal Mean Relative to Squared Error Loss Function

Let be a random sample from a normal distribution with unknown mean and known variance The usual estimator of the mean, i.e., sample mean is the maximum likelihood estimator which under squared error loss function is minimax and admissible estimator. In many practical situations, is known in advance to lie in an interval, say for some In this case, the maximum likelihood estimator...

متن کامل

Asymptotically optimal differenced estimators of error variance in nonparametric regression

The existing differenced estimators of error variance in nonparametric regression are interpreted as kernel estimators, and some requirements for a ‘‘good’’ estimator of error variance are specified. A new differenced method is then proposed that estimates the errors as the intercepts in a sequence of simple linear regressions and constructs a variance estimator based on estimated errors. The n...

متن کامل

Change Point Estimation of a Process Variance with a Linear Trend Disturbance

When a change occurs in a process, one expects to receive a signal from a control chart as quickly as possible. Upon the receipt of signal from the control chart a search for identifying the source of disturbance begins. However, searching for assignable cause around the signal time, due to the fact that the disturbance may have manifested itself into the rocess sometimes back, may not always l...

متن کامل

Liu Estimates and Influence Analysis in Regression Models with Stochastic Linear Restrictions and AR (1) Errors

In the linear regression models with AR (1) error structure when collinearity exists, stochastic linear restrictions or modifications of biased estimators (including Liu estimators) can be used to reduce the estimated variance of the regression coefficients estimates. In this paper, the combination of the biased Liu estimator and stochastic linear restrictions estimator is considered to overcom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017